Concept

CDC 8600

Résumé
The CDC 8600 was the last of Seymour Cray's supercomputer designs while he worked for Control Data Corporation. As the natural successor to the CDC 6600 and CDC 7600, the 8600 was intended to be about 10 times as fast as the 7600, already the fastest computer on the market. The design was essentially four 7600's, packed into a very small chassis so they could run at higher clock speeds. Development started in 1968, shortly after the release of the 7600, but the project soon started to bog down. The dense packaging of the system led to serious reliability problems and difficulty cooling the individual components. By 1971, CDC was having cash-flow problems and the design was still not coming together, prompting Cray to leave the company in 1972. The 8600 design effort was eventually canceled in 1974, and Control Data moved on to the CDC STAR-100 series instead. Cray revisited the 8600's basic design in his Cray-2 of the early 1980s. The introduction of integrated circuits solved the problems with dense packaging and liquid cooling addressed the heat issues. The Cray-2 is very similar to the 8600 both physically and conceptually. In the 1960s, computer design was based on mounting electronic components (transistors, resistors, etc.) on circuit boards. Several boards formed a discrete logic element of the machine, known as a module. Overall machine cycle speed is strongly related to the signal path—the length of the wiring—requiring high-speed computers to make their modules as small as possible. This was at odds with the need to make the modules themselves more complex to increase functionality. By the late 1960s, individual components had stopped getting much smaller, so to increase the complexity of the machines, the modules would have to grow. In theory, this could slow the machine down due to signalling delays. Cray aimed to solve these contradictory problems by doing both; making each module larger and crammed with many more components, while at the same time making the computer as a whole smaller by packing the modules closer together inside the machine.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.