Concept

Fonction de Volterra

Résumé
En mathématiques, la fonction de Volterra, qui prend son nom de Vito Volterra, est une fonction réelle V définie sur , ayant la curieuse combinaison suivante de propriétés : V est dérivable partout ; la dérivée V est bornée partout ; la dérivée n'est pas Riemann-intégrable. vignette|upright=2|Les trois premières étapes de la construction. La fonction est définie à partir de l'ensemble de Smith-Volterra-Cantor, qui sera noté ici S, et des « copies » de la fonction définie par pour ≠ 0 et , le but étant de construire une fonction dérivable dont la dérivée est discontinue sur un ensemble de mesure non nulle. Une telle dérivée ne pourra pas être Riemann-intégrable. L'ensemble S est une partie fermée de [0,1], de mesure non nulle, d'intérieur vide, sans point isolé. Son complémentaire dans [0,1] est une réunion dénombrable d'intervalles ouverts. On définit la fonction de Volterra de la façon suivante. Elle est nulle sur S. Sur chaque intervalle ouvert du complémentaire de S, elle est égale à une fonction dérivable, à dérivée continue, se prolongeant en a et en b en une fonction continue et dérivable, avec , mais de façon que la dérivée soit discontinue en a et en b. Pour cela, on adapte à l'intervalle la construction ci-dessous effectuée, pour simplifier les notations, au cas de l'intervalle ]0,1[ : Prendre pour , avec c un réel élément de et tel que . Prendre sur . Prendre sur . Ayant effectué une construction comparable sur chaque intervalle du complémentaire de S, on obtient une fonction V dérivable en tout point de , et dont la dérivée est discontinue sur S et continue sur son complémentaire. En effet, la fonction f précédente est dérivable en 0, de dérivée nulle. Mais pour x non nul, on a , ce qui implique que dans tout voisinage de zéro, il y a des points où prend les valeurs 1 et -1. Ainsi, il y a des points où prend les valeurs 1 et -1 dans tout voisinage de chaque borne des intervalles retirés lors de la construction de l'ensemble S de Smith-Volterra-Cantor. Ainsi, en tout point de S, V est dérivable, de dérivée nulle, mais y est discontinue.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement

MOOCs associés

Chargement