In computer science, concurrency is the ability of different parts or units of a program, algorithm, or problem to be executed out-of-order or in partial order, without affecting the outcome. This allows for parallel execution of the concurrent units, which can significantly improve overall speed of the execution in multi-processor and multi-core systems. In more technical terms, concurrency refers to the decomposability of a program, algorithm, or problem into order-independent or partially-ordered components or units of computation. According to Rob Pike, concurrency is the composition of independently executing computations, and concurrency is not parallelism: concurrency is about dealing with lots of things at once but parallelism is about doing lots of things at once. Concurrency is about structure, parallelism is about execution, concurrency provides a way to structure a solution to solve a problem that may (but not necessarily) be parallelizable. A number of mathematical models have been developed for general concurrent computation including Petri nets, process calculi, the parallel random-access machine model, the actor model and the Reo Coordination Language. As Leslie Lamport (2015) notes, "While concurrent program execution had been considered for years, the computer science of concurrency began with Edsger Dijkstra's seminal 1965 paper that introduced the mutual exclusion problem. ... The ensuing decades have seen a huge growth of interest in concurrency—particularly in distributed systems. Looking back at the origins of the field, what stands out is the fundamental role played by Edsger Dijkstra". Because computations in a concurrent system can interact with each other while being executed, the number of possible execution paths in the system can be extremely large, and the resulting outcome can be indeterminate. Concurrent use of shared resources can be a source of indeterminacy leading to issues such as deadlocks, and resource starvation.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (15)
CS-453: Concurrent computing
With the advent of modern architectures, it becomes crucial to master the underlying algorithmics of concurrency. The objective of this course is to study the foundations of concurrent algorithms and
CS-302: Parallelism and concurrency in software
From sensors,to smart phones,to the world's largest datacenters and supercomputers, parallelism & concurrency is ubiquitous in modern computing.There are also many forms of parallel & concurrent execu
CS-206: Parallelism and concurrency
Course no longer offered for new students; this edition is only a make-up course for those who repeated the year. Please log in with EPFL credentials and consult the mediaspace link below for course v
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.