Summary
In computer science, concurrency is the ability of different parts or units of a program, algorithm, or problem to be executed out-of-order or in partial order, without affecting the outcome. This allows for parallel execution of the concurrent units, which can significantly improve overall speed of the execution in multi-processor and multi-core systems. In more technical terms, concurrency refers to the decomposability of a program, algorithm, or problem into order-independent or partially-ordered components or units of computation. According to Rob Pike, concurrency is the composition of independently executing computations, and concurrency is not parallelism: concurrency is about dealing with lots of things at once but parallelism is about doing lots of things at once. Concurrency is about structure, parallelism is about execution, concurrency provides a way to structure a solution to solve a problem that may (but not necessarily) be parallelizable. A number of mathematical models have been developed for general concurrent computation including Petri nets, process calculi, the parallel random-access machine model, the actor model and the Reo Coordination Language. As Leslie Lamport (2015) notes, "While concurrent program execution had been considered for years, the computer science of concurrency began with Edsger Dijkstra's seminal 1965 paper that introduced the mutual exclusion problem. ... The ensuing decades have seen a huge growth of interest in concurrency—particularly in distributed systems. Looking back at the origins of the field, what stands out is the fundamental role played by Edsger Dijkstra". Because computations in a concurrent system can interact with each other while being executed, the number of possible execution paths in the system can be extremely large, and the resulting outcome can be indeterminate. Concurrent use of shared resources can be a source of indeterminacy leading to issues such as deadlocks, and resource starvation.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (6)