In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during the mission. As input to the Tsiolkovsky rocket equation, it determines how much propellant is required for a vehicle of given empty mass and propulsion system.
Delta-v is a scalar quantity dependent only on the desired trajectory and not on the mass of the space vehicle. For example, although more fuel is needed to transfer a heavier communication satellite from low Earth orbit to geosynchronous orbit than for a lighter one, the delta-v required is the same. Delta-v is also additive, as contrasted to rocket burn time, the latter having greater effect later in the mission when more fuel has been used up.
Tables of the delta-v required to move between different space regime are useful in the conceptual planning of space missions. In the absence of an atmosphere, the delta-v is typically the same for changes in orbit in either direction; in particular, gaining and losing speed cost an equal effort. An atmosphere can be used to slow a spacecraft by aerobraking.
A typical delta-v budget might enumerate various classes of maneuvers, delta-v per maneuver, and number of each maneuver required over the life of the mission, then simply sum the total delta-v, much like a typical financial budget. Because the delta-v needed to achieve the mission usually varies with the relative position of the gravitating bodies, launch windows are often calculated from porkchop plots that show delta-v plotted against the launch time.
The Tsiolkovsky rocket equation shows that the delta-v of a rocket (stage) is proportional to the logarithm of the fuelled-to-empty mass ratio of the vehicle, and to the specific impulse of the rocket engine. A key goal in designing space-mission trajectories is to minimize the required delta-v to reduce the size and expense of the rocket that would be needed to successfully deliver any particular payload to its destination.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
L'aérofreinage, ou freinage atmosphérique, est une manœuvre de mécanique spatiale qui permet de modifier les caractéristiques de l'orbite elliptique d'un vaisseau spatial en utilisant les forces de frottement (la traînée) exercées par l'atmosphère de la planète. Cette manœuvre est utilisée principalement pour placer une sonde spatiale en provenance de la Terre sur son orbite de travail autour de la planète qu'elle doit étudier.
vignette|redresse=1.2|Distance Terre-Mars et fenêtres de lancement adaptées, tous les (ici pour les années 2012 à 2024). vignette|Animation montrant la trajectoire de la sonde InSight rejoignant Mars. En astronautique, une fenêtre de tir, ou fenêtre de lancement, est un intervalle de temps au cours duquel sont réunies les conditions optimales pour le lancement d'une fusée. La navigation spatiale, entre des emplacements mobiles, étant essentiellement balistique, il convient de lancer dans la bonne direction, au bon moment et avec le bon delta-v sous peine de devoir faire des corrections coûteuses en carburant.
vignette|Trajectoires des sondes Voyager de la NASA. Dans le domaine des vols spatiaux, une manœuvre orbitale est définie comme étant l’utilisation d’un système de propulsion spatiale afin de modifier l’orbite d’un astronef. Par exemple il peut s’agir de l’augmentation ou la diminution de la vitesse d’une sonde interplanétaire, de l’orientation d’un satellite, ou encore de la modification de l’inclinaison de son orbite. Par opposition, lorsque le véhicule spatial considéré n’est pas soumis à une manœuvre orbitale, on dit alors qu’il est en phase de vol balistique.
The main objective of the course is to provide an overview of space propulsion systems. The course will also describe the basic design principles of propulsion systems.
This course is a "concepts" course. It introduces a variety of concepts in use in the design of a space mission, manned or unmanned, and in space operations. it is partly based on the practical space
Evaluating and updating the obstacle avoidance velocity for an autonomous robot in real-time ensures robustness against noise and disturbances. A passive damping controller can obtain the desired motion with a torque-controlled robot, which remains complia ...
2024
The pivot-slide model (Shegelski and Lozowski) successfully predicts the slide and curl distances of a curling rock. However, in this model, there is no dependence of the curl distance on the initial velocity, because the ratio between the pivot to sliding ...
Context. Isolated local group (LG) dwarf galaxies have evolved most or all of their life unaffected by interactions with the large LG spirals and therefore offer the opportunity to learn about the intrinsic characteristics of this class of objects. Aims. O ...