SNOBOLSNOBOL (abréviation de StriNg Oriented symBOlic Language) est un langage de programmation basé sur le traitement des chaînes de caractères. Il a été défini entre 1960 et 1962 dans les Laboratoires Bell. Il est resté confidentiel jusqu'à sa version 4 (SNOBOL4), qui a connu la célébrité grâce à son algorithme de filtrage par motif très puissant ; par contre sa syntaxe était très liée à la technologie des cartes perforées, et un programme en SNOBOL était illisible une fois écrit.
Linked data structureIn computer science, a linked data structure is a data structure which consists of a set of data records (nodes) linked together and organized by references (links or pointers). The link between data can also be called a connector. In linked data structures, the links are usually treated as special data types that can only be dereferenced or compared for equality. Linked data structures are thus contrasted with arrays and other data structures that require performing arithmetic operations on pointers.
Option typeIn programming languages (especially functional programming languages) and type theory, an option type or maybe type is a polymorphic type that represents encapsulation of an optional value; e.g., it is used as the return type of functions which may or may not return a meaningful value when they are applied. It consists of a constructor which either is empty (often named None or Nothing), or which encapsulates the original data type A (often written Just A or Some A).
Type constructorIn the area of mathematical logic and computer science known as type theory, a type constructor is a feature of a typed formal language that builds new types from old ones. Basic types are considered to be built using nullary type constructors. Some type constructors take another type as an argument, e.g., the constructors for product types, function types, power types and list types. New types can be defined by recursively composing type constructors.
Correction d'un algorithmeUn algorithme est correct s'il fait ce qu'on attend de lui. Plus précisément, rappelons qu'un algorithme est décrit par une spécification des données sur lesquelles l'algorithme va démarrer son calcul et une spécification du résultat produit par l'algorithme. Démontrer la correction de l'algorithme consiste à démontrer que l'algorithme retourne, quand il calcule en partant des données, un objet qui est un des résultats escomptés et qui satisfait la spécification du résultat comme énoncé dans la description de l'algorithme.
Type introspectionIn computing, type introspection is the ability of a program to examine the type or properties of an object at runtime. Some programming languages possess this capability. Introspection should not be confused with reflection, which goes a step further and is the ability for a program to manipulate the values, metadata, properties, and functions of an object at runtime. Some programming languages also possess that capability (e.g., Java, Python, Julia, and Go). Type introspection is a core feature of Ruby.