Agent-based computational economicsAgent-based computational economics (ACE) is the area of computational economics that studies economic processes, including whole economies, as dynamic systems of interacting agents. As such, it falls in the paradigm of complex adaptive systems. In corresponding agent-based models, the "agents" are "computational objects modeled as interacting according to rules" over space and time, not real people. The rules are formulated to model behavior and social interactions based on incentives and information.
Evolutionary computationIn computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character. In evolutionary computation, an initial set of candidate solutions is generated and iteratively updated.
Agent-based social simulationAgent-based social simulation (or ABSS) consists of social simulations that are based on agent-based modeling, and implemented using artificial agent technologies. Agent-based social simulation is a scientific discipline concerned with simulation of social phenomena, using computer-based multiagent models. In these simulations, persons or group of persons are represented by agents. MABSS is a combination of social science, multiagent simulation and computer simulation.
Vehicular automationVehicular automation involves the use of mechatronics, artificial intelligence, and multi-agent systems to assist the operator of a vehicle (car, aircraft, watercraft, or otherwise). These features and the vehicles employing them may be labeled as intelligent or smart. A vehicle using automation for difficult tasks, especially navigation, to ease but not entirely replace human input, may be referred to as semi-autonomous, whereas a vehicle relying solely on automation is called robotic or autonomous.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Hypothèse de simulationvignette|The Matrix - Capture d'écran du célèbre économiseur d'écran GLMatrix L'hypothèse de simulation énonce que la réalité observable a pour trame une simulation, semblable à celles de nos ordinateurs, sans que les entités y évoluant puissent la distinguer commodément de la vraie réalité. Cette hypothèse repose elle-même sur le développement de la réalité simulée, actuellement considérée comme une technologie fictive et gravitant autour de nombreuses œuvres de science-fiction, telles Star Trek, eXistenZ, Passé virtuel ou Matrix.
Philosophie de l'intelligence artificielleLa philosophie de l'intelligence artificielle tente de répondre à des questions telles que : Une machine peut-elle agir intelligemment ? Peut-elle résoudre n'importe quel problème qu'une personne voudrait résoudre par la réflexion ? L'intelligence humaine et l'intelligence artificielle sont-elles fondamentalement les mêmes ? Le cerveau humain est-il analogue à un processus de traitement de l'information ? Une machine peut-elle avoir un esprit ou une conscience similaire à celle de l'humain ? Peut-elle senti