Scotobiology is the study of biology as directly and specifically affected by darkness, as opposed to photobiology, which describes the biological effects of light.
The science of scotobiology gathers together under a single descriptive heading a wide range of approaches to the study of the biology of darkness. This includes work on the effects of darkness on the behavior and metabolism of animals, plants, and microbes. Some of this work has been going on for over a century, and lays the foundation for understanding the importance of dark night skies, not only for humans but for all biological species.
The great majority of biological systems have evolved in a world of alternating day and night and have become irrevocably adapted to and dependent on the daily and seasonally changing patterns of light and darkness. Light is essential for many biological activities such as sight and photosynthesis. These are the focus of the science of photobiology. But the presence of uninterrupted periods of darkness, as well as their alternation with light, is just as important to biological behaviour. Scotobiology studies the positive responses of biological systems to the presence of darkness, and not merely the negative effects caused by the absence of light.
Many of the biological and behavioural activities of plants, animals (including birds and amphibians), insects, and microorganisms are either adversely affected by light pollution at night or can only function effectively either during or as the consequence of nightly darkness. Such activities include foraging, breeding and social behavior in higher animals, amphibians, and insects, which are all affected in various ways if light pollution occurs in their environment. These are not merely photobiological phenomena; light pollution acts by interrupting critical dark-requiring processes.
But perhaps the most important scotobiological phenomena relate to the regular periodic alternation of light and darkness.