Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper, we propose a simple approach to jointly model both grapheme and phoneme information using Kullback-Leibler divergence based HMM (KL-HMM) system. More specifically, graphemes are used as subword units and phoneme posterior probabilities estim ...
In this paper, we analyze the confusions patterns at three places in the hybrid phoneme recognition system. The confusions are analyzed at the pronunciation, the posterior probability, and the phoneme recognizer levels. The confusions show significant stru ...
In this paper, we analyze the confusions patterns at three places in the hybrid phoneme recognition system. The confusions are analyzed at the pronunciation, the posterior probability, and the phoneme recognizer levels. The confusions show significant stru ...
We present a proposal of a kernel-based model for large vocabulary continuous speech recognizer. The continuous speech recognition is described as a problem of finding the best phoneme sequence and its best time span, where the phonemes are generated from ...
Confusion matrices and truncation experiments have long been a part of psychoacoustic experimentation. However confusion matrices are seldom used to analyze truncation experiments. A truncation experiment was conducted and the confusion patterns were analy ...
We investigate the detection of spoken terms in conversational speech using phoneme recognition with the objective of achieving smaller index size as well as faster search speed. Speech is processed and indexed as a sequence of one best phoneme sequence. W ...
This chapter introduces a discriminative method for detecting and spotting keywords in spoken utterances. Given a word represented as a sequence of phonemes and a spoken utterance, the keyword spotter predicts the best time span of the phoneme sequence in ...
The use of local phoneme posterior probabilities has been increasingly explored for improving speech recognition systems. Hybrid hidden Markov model / artificial neural network (HMM/ANN) and Tandem are the most successful examples of such systems. In this ...
We investigate the detection of spoken terms in conversational speech using phoneme recognition with the objective of achieving smaller index size as well as faster search speed. Speech is processed and indexed as a sequence of one best phoneme sequence. W ...
The use of local phoneme posterior probabilities has been increasingly explored for improving speech recognition systems. Hybrid hidden Markov model / artificial neural network (HMM/ANN) and Tandem are the most successful examples of such systems. In this ...