Concept

Charge density wave

Résumé
A charge density wave (CDW) is an ordered quantum fluid of electrons in a linear chain compound or layered crystal. The electrons within a CDW form a standing wave pattern and sometimes collectively carry an electric current. The electrons in such a CDW, like those in a superconductor, can flow through a linear chain compound en masse, in a highly correlated fashion. Unlike a superconductor, however, the electric CDW current often flows in a jerky fashion, much like water dripping from a faucet due to its electrostatic properties. In a CDW, the combined effects of pinning (due to impurities) and electrostatic interactions (due to the net electric charges of any CDW kinks) likely play critical roles in the CDW current's jerky behavior, as discussed in sections 4 & 5 below. Most CDW's in metallic crystals form due to the wave-like nature of electrons – a manifestation of quantum mechanical wave-particle duality – causing the electronic charge density to become spatially modulated, i.e., to form periodic "bumps" in charge. This standing wave affects each electronic wave function, and is created by combining electron states, or wavefunctions, of opposite momenta. The effect is somewhat analogous to the standing wave in a guitar string, which can be viewed as the combination of two interfering, traveling waves moving in opposite directions (see interference (wave propagation)). The CDW in electronic charge is accompanied by a periodic distortion – essentially a superlattice – of the atomic lattice. The metallic crystals look like thin shiny ribbons (e.g., quasi-1-D NbSe3 crystals) or shiny flat sheets (e.g., quasi-2-D, 1T-TaS2 crystals). The CDW's existence was first predicted in the 1930s by Rudolf Peierls. He argued that a 1-D metal would be unstable to the formation of energy gaps at the Fermi wavevectors ±kF, which reduce the energies of the filled electronic states at ±kF as compared to their original Fermi energy EF. The temperature below which such gaps form is known as the Peierls transition temperature, TP.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.