High harmonic generation (HHG) is a non-linear process during which a target (gas, plasma, solid or liquid sample) is illuminated by an intense laser pulse. Under such conditions, the sample will emit the high harmonics of the generation beam (above the fifth harmonic). Due to the coherent nature of the process, high harmonics generation is a prerequisite of attosecond physics. Perturbative harmonic generation is a process whereby laser light of frequency ω and photon energy ħω can be used to generate new frequencies of light. The newly generated frequencies are integer multiples nω of the original light's frequency. This process was first discovered in 1961 by Franken et al., using a ruby laser, with crystalline quartz as the nonlinear medium. Harmonic generation in dielectric solids is well understood and extensively used in modern laser physics (see second-harmonic generation). In 1967 New et al. observed the first third harmonic generation in a gas. In monatomic gases it is only possible to produce odd numbered harmonics for reasons of symmetry. Harmonic generation in the perturbative (weak field) regime is characterised by rapidly decreasing efficiency with increasing harmonic order. This behaviour can be understood by considering an atom absorbing n photons then emitting a single high energy photon. The probability of absorbing n photons decreases as n increases, explaining the rapid decrease in the initial harmonic intensities. The first high harmonic generation was observed in 1977 in interaction of intense CO2 laser pulses with plasma generated from solid targets. HHG in gases, far more widespread in application today, was first observed by McPherson and colleagues in 1987, and later by Ferray et al. in 1988, with surprising results: the high harmonics were found to decrease in intensity at low orders, as expected, but then were observed to form a plateau, with the intensity of the harmonics remaining approximately constant over many orders. Plateau harmonics spanning hundreds of eV have been measured which extend into the soft X-ray regime.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (6)
CH-417: Optical methods in chemistry
Introduction and application of photon based tools for chemical sciences: from basic concepts to optical and x-ray lasers
PHYS-470: Nonlinear optics for quantum technologies
This course provides the fundamental knowledge and theoretical tools needed to treat nonlinear optical interactions, covering both classical and quantum theory of nonlinear optics. It presents applica
PHYS-607: Nonlinear fibre optics
Presentation of the different sources of optical nonlinearities in an optical fibre
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.