The argument of periapsis (also called argument of perifocus or argument of pericenter), symbolized as ω, is one of the orbital elements of an orbiting body. Parametrically, ω is the angle from the body's ascending node to its periapsis, measured in the direction of motion.
For specific types of orbits, terms such as argument of perihelion (for heliocentric orbits), argument of perigee (for geocentric orbits), argument of periastron (for orbits around stars), and so on, may be used (see apsis for more information).
An argument of periapsis of 0° means that the orbiting body will be at its closest approach to the central body at the same moment that it crosses the plane of reference from South to North. An argument of periapsis of 90° means that the orbiting body will reach periapsis at its northmost distance from the plane of reference.
Adding the argument of periapsis to the longitude of the ascending node gives the longitude of the periapsis. However, especially in discussions of binary stars and exoplanets, the terms "longitude of periapsis" or "longitude of periastron" are often used synonymously with "argument of periapsis".
In astrodynamics the argument of periapsis ω can be calculated as follows:
If ez < 0 then ω → 2pi − ω.
where:
n is a vector pointing towards the ascending node (i.e. the z-component of n is zero),
e is the eccentricity vector (a vector pointing towards the periapsis).
In the case of equatorial orbits (which have no ascending node), the argument is strictly undefined. However, if the convention of setting the longitude of the ascending node Ω to 0 is followed, then the value of ω follows from the two-dimensional case:
If the orbit is clockwise (i.e. (r × v)z < 0) then ω → 2pi − ω.
where:
ex and ey are the x- and y-components of the eccentricity vector e.
In the case of circular orbits it is often assumed that the periapsis is placed at the ascending node and therefore ω = 0.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is a "concepts" course. It introduces a variety of concepts in use in the design of a space mission, manned or unmanned, and in space operations. it is partly based on the practical space
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
En astronomie, plus précisément en mécanique céleste, le mouvement képlérien correspond à une description du mouvement d'un astre par rapport à un autre respectant les trois lois de Kepler. Pour cela il faut que l'interaction entre les deux astres puisse être considérée comme purement newtonienne, c'est-à-dire qu'elle varie en raison inverse du carré de leur distance, et que l'influence de tous les autres astres soit négligée.
Une orbite terrestre est l'orbite suivie par un objet circulant autour de la Terre. Depuis le début de l'ère spatiale (1957) plusieurs milliers de satellites ont été placés en orbite autour de notre planète. Les orbites des engins spatiaux ont des caractéristiques différentes dans le but de répondre aux objectifs de leur mission. Des millions de débris spatiaux de toute taille résultant de l'activité spatiale sont également en orbite autour de la Terre. Outre les objets artificiels, un objet naturel, la Lune, est en orbite autour de la Terre.
Une orbite héliocentrique est une orbite autour du Soleil. Plus précisément, un objet naturel ou manufacturé est dit « en [ou sur une] orbite héliocentrique » si sa trajectoire est, en première approximation, une conique (en général une ellipse) dont un foyer est le Soleil, sans que cet objet tourne autour d'un autre corps plus proche. Le périapside d'une orbite héliocentrique est appelée le périhélie, et son apoapside l'aphélie.