Concept

Paradoxe de Richard

Résumé
Le paradoxe de Richard est le paradoxe suivant, qui apparaît lorsqu'une théorie des ensembles n'est pas suffisamment formalisée : Son auteur, le mathématicien français Jules Richard, professeur au lycée de Dijon, le décrivit dans une lettre au directeur de la Revue générale des Sciences Pures et Appliquées. Ce dernier décida de la publier, sous forme d'un court article, dans le numéro du de cette revue. Il a joué un rôle important dans les recherches sur les fondements des mathématiques, en particulier au début du , et a suscité depuis sa publication en 1905 de nombreux commentaires. Voici quelques détails sur la construction : L'ensemble E des nombres réels définissables avec un nombre fini de mots est dénombrable (une réunion dénombrable d'ensemble finis est finie ou dénombrable, voir l'article ensemble dénombrable) ; On peut construire un réel N qui n'est pas dans E par le procédé de diagonalisation suivant : on numérote les éléments de E, puis, on choisit chaque chiffre de N de sorte que le n-ième chiffre de N soit différent du n-ième chiffre du n-ième élément, et que ce ne soit pas 9 (pour éviter la double écriture des décimaux). Ainsi, pour chaque n, l'élément numéro n diffère de N pour au moins un chiffre, donc n diffère bien de N (tous les réels, en dehors des décimaux, ont une écriture décimale unique). Cependant, en décrivant ce procédé de construction, on a défini N en un nombre fini de mots : c'est une contradiction. Ce paradoxe, qui se formule très simplement, comme le paradoxe de Russell, pose cependant un problème de nature différente, qui est celui du langage licite pour les énoncés mathématiques, comme le remarque Giuseppe Peano dès 1906. Comme le paradoxe de Russell, il joue un rôle important dans la crise des fondements des mathématiques au début du , crise que voulut résoudre d'une façon définitive le programme de Hilbert. Il est mentionné par Kurt Gödel dans l'introduction de son article de 1931 sur les théorèmes d'incomplétude : quand il résume l'argument permettant de construire une proposition indécidable, il déclare que « L'analogie qui existe entre ce raisonnement et l'antinomie de Richard saute aux yeux ».
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.