Le polynôme de Tutte, aussi appelé polynôme dichromatique ou polynôme de Tutte–Whitney, est un polynôme invariant de graphes dont les valeurs expriment des propriétés d'un graphe. C'est un polynôme en deux variables qui joue un rôle important en théorie des graphes et en combinatoire. Il est défini pour tout graphe non orienté et contient des informations liées à ses propriétés de connexité.
L'importance de ce polynôme provient des informations qu'il contient sur le graphe . Étudié au départ dans le cadre de la théorie algébrique des graphes comme une généralisation des problèmes d'énumération liés à la coloration de graphes, il contient diverses spécialisations à d'autres disciplines, comme le polynôme de Jones en théorie des nœuds, les fonctions de partitions liées au en physique statistique, le polynôme énumérateur des poids en théorie des codes, le polynôme de fiabilité en théorie des réseaux. Tous peuvent être exprimés comme des spécialisations du polynôme de Tutte. Il est aussi à la source de divers problèmes algorithmiques en informatique théorique. L'interprétation combinatoire des polynômes de Tutte est en étroite relation avec l’énumération d'objets combinatoires par des méthodes de langages formels et séries formelles non commutatives
Les polynômes de Tutte ont plusieurs nom et définitions équivalents. Un polynôme de Tutte est équivalent au rang polynomial de Whitney, au polynôme dichromatique de Tutte et au random cluster model de Fortuin–Kasteleyn par des transformations simples. C'est essentiellement une série génératrice comptant les ensembles d'arêtes d'une taille de composantes connexes donnés, avec une généralisation naturelle aux matroïdes. C'est également l'invariant de graphes le plus général définissable par une récurrence de type suppression-contraction. Plusieurs livres de théorie des graphes ou de matroïdes consacrent des chapitres entiers aux polynômes de Tutte.
vignette|upright=2|Le polynôme est le polynôme de Tutte du graphe taureau. La ligne rouge indique l'intersection avec le plan , équivalent au polynôme chromatique.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In graph theory, an acyclic orientation of an undirected graph is an assignment of a direction to each edge (an orientation) that does not form any directed cycle and therefore makes it into a directed acyclic graph. Every graph has an acyclic orientation. The chromatic number of any graph equals one more than the length of the longest path in an acyclic orientation chosen to minimize this path length. Acyclic orientations are also related to colorings through the chromatic polynomial, which counts both acyclic orientations and colorings.
In graph theory, a nowhere-zero flow or NZ flow is a network flow that is nowhere zero. It is intimately connected (by duality) to coloring planar graphs. Let G = (V,E) be a digraph and let M be an abelian group. A map φ: E → M is an M-circulation if for every vertex v ∈ V where δ+(v) denotes the set of edges out of v and δ−(v) denotes the set of edges into v. Sometimes, this condition is referred to as Kirchhoff's law. If φ(e) ≠ 0 for every e ∈ E, we call φ a nowhere-zero flow, an M-flow, or an NZ-flow.
En théorie des graphes, le graphe dual d'un graphe plongé dans une surface est défini à l'aide des composantes de son complémentaire, lesquelles sont reliées entre elles par les arêtes du graphe de départ. Cette notion généralise celle de dualité dans les polyèdres. Il faut noter qu'un même graphe abstrait peut avoir des graphes duaux non isomorphes en fonction du plongement choisi, même dans le cas de plongements dans le plan. Un graphe (plongé) isomorphe à son dual est dit autodual.
Explore l'entrelacement des familles de polynômes et des graphiques de Ramanujan à un côté, en se concentrant sur leurs propriétés et leurs méthodes de construction.
Couvre le polynôme d'indépendance d'un graphe de dépendance et des concepts connexes tels que la coloration du graphe et les propriétés du graphe dirigé.
Introduit des valeurs propres, des vecteurs propres et des matrices similaires, en mettant l'accent sur la diagonalisation et les interprétations géométriques.