right|frame|Mince couche de liquide mélangée à des particules, coulant le long d'un plan incliné. Lorsqu'un liquide est fortement confiné entre deux surfaces, c'est-à-dire que l'épaisseur de liquide est très faible devant les dimensions transversales des parois confinantes, il est possible de simplifier fortement l'équation de Navier-Stokes qui gouverne son écoulement : c'est l'approximation de lubrification, qui permet en particulier de décrire l'écoulement du liquide dans les contacts lubrifiés. Les écoulements intérieurs sont ceux où les frontières du volume de fluide sont connues, et cela inclut les écoulements à l'intérieur des paliers. Ici, un but essentiel de la théorie de la lubrification est de déterminer la distribution de pression dans le volume de fluide, et donc des forces sur les composants du roulement. Le fluide à l'œuvre dans ce cas est souvent appelé lubrifiant. La théorie de la lubrification des films libres concerne le cas où l'une des surfaces contenant le fluide est une surface libre. Dans ce cas, la position de la surface libre est elle-même inconnue, et l'un des buts de la théorie de la lubrification est alors de la déterminer. La tension superficielle peut alors jouer un rôle, voire être dominante, ce qui fait surgir les questions du mouillage et du démouillage. Pour les films très fins (d'épaisseur inférieure au micromètre, des forces intermoléculaires supplémentaires telles que la pression de disjonction, peuvent devenir importantes. Un domaine important d'application est la lubrification des composants mécaniques tels que les paliers et les joints mécaniques. Les techniques de revêtement constituent une autre application majeure, y compris la préparation de films minces, l'impression, la peinture et les adhésifs. Pour les adhésifs, par exemple, la résistance initiale au décollement résulte de la géométrie de lubrification. L'écoulement d'un fluide dans un conduit ou dans un milieu poreux relève également de la lubrification.