Concept

High-test peroxide

Résumé
High-test peroxide (HTP) is a highly concentrated (85 to 98%) solution of hydrogen peroxide, with the remainder consisting predominantly of water. In contact with a catalyst, it decomposes into a high-temperature mixture of steam and oxygen, with no remaining liquid water. It was used as a propellant of HTP rockets and torpedoes, and has been used for high-performance vernier engines. Hydrogen peroxide works best as a propellant in extremely high concentrations (roughly over 70%). Although any concentration of peroxide will generate some hot gas (oxygen plus some steam), at concentrations above approximately 67%, the heat of decomposing hydrogen peroxide becomes large enough to completely vaporize all the liquid at standard pressure. This represents a safety and utilization turning point, since decomposition of any concentration above this amount is capable of transforming the liquid entirely to heated gas (the higher the concentration, the hotter the resulting gas). This very hot steam/oxygen mixture can then be used to generate maximal thrust, power, or work, but it also makes explosive decomposition of the material far more hazardous. Normal propellant-grade concentrations, therefore, vary from 70 to 98%, with common grades of 70, 85, 90, and 98%. The volume change of peroxide due to freezing varies with percentage. Lower concentrations of peroxide (45% or less) will expand when frozen, while higher concentrations (65% or greater) will contract. Hydrogen peroxide becomes more stable with higher peroxide content. For example, 98% hydrogen peroxide is more stable than 70% hydrogen peroxide. Water acts as a contaminant, and the higher the water concentration the less stable the peroxide is. The storability of peroxide is dependent on the surface-to-volume ratio of the materials the fluid is in contact with. To increase storability, the ratio should be minimized. When used with a suitable catalyst, HTP can be used as a monopropellant, or with a separate fuel as a bipropellant.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.