In celestial mechanics, the standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of the bodies. For two bodies the parameter may be expressed as G(m1+m2), or as GM when one body is much larger than the other: For several objects in the Solar System, the value of μ is known to greater accuracy than either G or M. The SI units of the standard gravitational parameter are m3 s−2. However, units of km3 s−2 are frequently used in the scientific literature and in spacecraft navigation. The central body in an orbital system can be defined as the one whose mass (M) is much larger than the mass of the orbiting body (m), or M ≫ m. This approximation is standard for planets orbiting the Sun or most moons and greatly simplifies equations. Under Newton's law of universal gravitation, if the distance between the bodies is r, the force exerted on the smaller body is: Thus only the product of G and M is needed to predict the motion of the smaller body. Conversely, measurements of the smaller body's orbit only provide information on the product, μ, not G and M separately. The gravitational constant, G, is difficult to measure with high accuracy, while orbits, at least in the solar system, can be measured with great precision and used to determine μ with similar precision. For a circular orbit around a central body, where the centripetal force provided by gravity is F = mvr: where r is the orbit radius, v is the orbital speed, ω is the angular speed, and T is the orbital period. This can be generalized for elliptic orbits: where a is the semi-major axis, which is Kepler's third law. For parabolic trajectories rv2 is constant and equal to 2μ. For elliptic and hyperbolic orbits μ = 2a, where ε is the specific orbital energy. In the more general case where the bodies need not be a large one and a small one, e.g. a binary star system, we define: the vector r is the position of one body relative to the other r, v, and in the case of an elliptic orbit, the semi-major axis a, are defined accordingly (hence r is the distance) μ = Gm1 + Gm2 = μ1 + μ2, where m1 and m2 are the masses of the two bodies.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
PHYS-101(f): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
PHYS-100: Advanced physics I (mechanics)
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Publications associées (6)
Concepts associés (19)
Excentricité orbitale
L’excentricité orbitale définit, en mécanique céleste et en mécanique spatiale, la forme des orbites des objets célestes. L'excentricité est couramment notée . Elle exprime l'écart de forme entre l'orbite et le cercle parfait dont l'excentricité est nulle. Lorsque , la trajectoire est fermée : l'orbite est périodique. Dans ce cas : lorsque , l'objet décrit un cercle et son orbite est dite circulaire ; lorsque , l'objet décrit une ellipse et son orbite est dite elliptique. Lorsque , la trajectoire est ouverte.
Semi-major and semi-minor axes
In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section.
Vitesse orbitale
thumb|Comparaisons de vitesses orbitales de différents satellites de la Terre. La vitesse orbitale d'un objet céleste, le plus souvent une planète, un satellite naturel, un satellite artificiel ou une étoile binaire, est la vitesse à laquelle il orbite autour du barycentre d'un système à deux corps, soit donc le plus souvent autour d'un corps plus massif. L'expression peut être employée pour désigner la vitesse orbitale moyenne du corps le long de son orbite ou la vitesse orbitale instantanée, en un point précis.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.