Orbite osculatriceEn astronomie, plus précisément en mécanique spatiale, l'orbite osculatrice d'un objet dans l'espace à un moment donné est l'orbite de Kepler gravitationnelle (i.e. elliptique ou conique) que cet objet aurait eu par rapport au corps central en l'absence de perturbations. En d'autres termes, c'est l'orbite qui correspond aux courants, soit la position et la vitesse. L'orbite osculatrice ainsi que la position d'un objet sont déterminées par les six éléments orbitaux képlériens standard.
Mouvement képlérienEn astronomie, plus précisément en mécanique céleste, le mouvement képlérien correspond à une description du mouvement d'un astre par rapport à un autre respectant les trois lois de Kepler. Pour cela il faut que l'interaction entre les deux astres puisse être considérée comme purement newtonienne, c'est-à-dire qu'elle varie en raison inverse du carré de leur distance, et que l'influence de tous les autres astres soit négligée.
Semi-major and semi-minor axesIn geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section.
Orbital state vectorsIn astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position () and velocity () that together with their time (epoch) () uniquely determine the trajectory of the orbiting body in space. State vectors are defined with respect to some frame of reference, usually but not always an inertial reference frame.
Problème à deux corpsLe problème à deux corps est un modèle théorique important en mécanique, qu'elle soit classique ou quantique, dans lequel sont étudiés les mouvements de deux corps assimilés à des points matériels en interaction mutuelle (conservative), le système global étant considéré comme isolé. Dans cet article, seul sera abordé le problème à deux corps en mécanique classique (voir par exemple l'article atome d'hydrogène pour un exemple en mécanique quantique), d'abord dans le cas général d'un potentiel attractif, puis dans le cas particulier très important où les deux corps sont en interaction gravitationnelle, ou mouvement képlérien, lequel est un sujet important de la mécanique céleste.
Excentricité orbitaleL’excentricité orbitale définit, en mécanique céleste et en mécanique spatiale, la forme des orbites des objets célestes. L'excentricité est couramment notée . Elle exprime l'écart de forme entre l'orbite et le cercle parfait dont l'excentricité est nulle. Lorsque , la trajectoire est fermée : l'orbite est périodique. Dans ce cas : lorsque , l'objet décrit un cercle et son orbite est dite circulaire ; lorsque , l'objet décrit une ellipse et son orbite est dite elliptique. Lorsque , la trajectoire est ouverte.
Mécanique spatialeLa mécanique spatiale, aussi dénommée astrodynamique, est, dans le domaine de l'astronomie et de l'astronautique, la science qui a trait à l'étude des mouvements. C'est une branche particulière de la mécanique céleste qui a notamment pour but de prévoir les trajectoires des objets spatiaux tels que les fusées ou les engins spatiaux y compris les manœuvres orbitales, les changements de plan d'orbite et les transferts interplanétaires.
Lois de Keplerthumb|Johannes Kepler. En astronomie, les lois de Kepler décrivent les propriétés principales du mouvement des planètes autour du Soleil. L'éponyme des lois est l'astronome Johannes Kepler (-) qui les a établies de manière empirique à partir des observations et mesures de la position des planètes faites par Tycho Brahe, mesures qui étaient très précises pour l'époque ( de précision).
Orbite elliptiqueEn mécanique céleste et en mécanique spatiale, une orbite elliptique est une orbite dont l'excentricité est inférieure à 1 et non nulle. L'astronome andalou et musulman Al-Zarqali du suggère et affirme déjà que les orbites planétaires sont des ellipses. L'ellipticité des orbites héliocentriques de la Terre et des autres planètes du Système solaire a été découverte par l'astronome allemand et protestant Johannes Kepler (1571-1630), à partir des observations de l'orbite de la planète Mars.
Période de révolutionLa révolution ou mouvement de révolution est, en mécanique céleste, un mouvement de translation périodique, circulaire ou elliptique. La période de révolution, aussi appelée période orbitale, est la durée mise par un astre pour accomplir une révolution complète autour d’un autre astre (par exemple une planète autour du Soleil ou un satellite autour d’une planète). Cette période correspond à la durée mise par l'astre concerné pour revenir au même point par rapport à un point donné, ce dernier pouvant être une étoile fixe (période de révolution sidérale), le point équinoxial.