A slab (or plank) is the part of the d-dimensional Euclidean space that lies between two parallel hyperplanes. The distance between the these hyperplanes is called the width of the slab. It is conjectured that the members of any infinite family of slabs wi ...
We prove that every online learnable class of functions of Littlestone dimension d admits a learning algorithm with finite information complexity. Towards this end, we use the notion of a globally stable algorithm. Generally, the information complexity of ...
In this paper we derive quantitative estimates in the context of stochastic homogenization for integral functionals defined on finite partitions, where the random surface integrand is assumed to be stationary. Requiring the integrand to satisfy in addition ...
We study how permutation symmetries in overparameterized multi-layer neural networks generate `symmetry-induced' critical points. Assuming a network with L layers of minimal widths r1∗,…,rL−1∗ reaches a zero-loss minimum at $ r_1^*! \c ...
Deformation twinning on a plane is a simple shear that transforms a unit cell attached to the plane into another unit cell equivalent by mirror symmetry or 180 degrees rotation. Thus, crystallographic models of twinning require the determination of the sho ...
Diffusion adaptation is a powerful strategy for distributed estimation and learning over networks. Motivated by the concept of combining adaptive filters, this work proposes a combination framework that aggregates the operation of multiple diffusion strate ...
Modifying the moduli of supporting convexity and supporting smoothness, we introduce new moduli for Banach spaces which occur, for example, as lengths of catheti of right-angled triangles (defined via so-called quasiorthogonality). These triangles have two ...
Given a set V of points in , two points p, q from V form a double-normal pair, if the set V lies between two parallel hyperplanes that pass through p and q, respectively, and that are orthogonal to the segment pq. In this paper we study the maximum number ...
Effective representation methods and proper signal priors are crucial in most signal processing applications. In this thesis we focus on different structured models and we design appropriate schemes that allow the discovery of low dimensional latent struct ...
Barycentric coordinates yield a powerful and yet simple paradigm to interpolate data values on polyhedral domains. They represent interior points of the domain as an affine combination of a set of control points, defining an interpolation scheme for any fu ...