EE-613: Machine Learning for EngineersThe objective of this course is to give an overview of machine learning techniques used for real-world applications, and to teach how to implement and use them in practice. Laboratories will be done i
CS-479: Learning in neural networksArtificial Neural Networks are inspired by Biological Neural Networks. One big difference is
that optimization in Deep Learning is done with the BackProp Algorithm, whereas in biological neural
netwo
CS-250: Algorithms IThe students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
ENG-209: Data science for engineers with PythonCe cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
MATH-101(g): Analysis IÉtudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
CS-457: Geometric computingThis course will cover mathematical concepts and efficient numerical methods for geometric computing. We will explore the beauty of geometry and develop algorithms to simulate and optimize 2D and 3D g
MATH-502: Distribution and interpolation spacesThe goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
EE-735: Online learning in gamesThis course provides an overview of recent developments in online learning, game theory, and variational inequalities and their point of intersection with a focus on algorithmic development. The prima