CIVIL-459: Deep learning for autonomous vehiclesDeep Learning (DL) is the subset of Machine learning reshaping the future of transportation and mobility. In this class, we will show how DL can be used to teach autonomous vehicles to detect objects,
MICRO-311(a): Signals and systems II (for MT)Ce cours aborde la théorie des systèmes linéaires discrets invariants par décalage (LID). Leurs propriétés et caractéristiques fondamentales y sont discutées, ainsi que les outils fondamentaux permett
MATH-341: Linear modelsRegression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with
ME-390: Foundations of artificial intelligenceThis course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanica
MGT-418: Convex optimizationThis course introduces the theory and application of modern convex optimization from an engineering perspective.
CS-503: Visual intelligence : machines and mindsThe course will discuss classic material as well as recent advances in computer vision and machine learning relevant to processing visual data -- with a primary focus on embodied intelligence and visi
ME-326: Control systems and discrete-time controlCe cours inclut la modélisation et l'analyse de systèmes dynamiques, l'introduction des principes de base et l'analyse de systèmes en rétroaction, la synthèse de régulateurs dans le domain fréquentiel