MATH-476: Optimal transportThe first part is devoted to Monge and Kantorovitch problems, discussing the existence and the properties of the optimal plan. The second part introduces the Wasserstein distance on measures and devel
MATH-220: Topology I - point set topologyA topological space is a space endowed with a notion of nearness. A metric space is an example of a topological space, where a distance function measures the concept of nearness. Within this abstract
MATH-414: Stochastic simulationThe student who follows this course will get acquainted with computational tools used to analyze systems with uncertainty arising in engineering, physics, chemistry, and economics. Focus will be on s
PHYS-757: Axiomatic Quantum Field TheoryPresentation of Wightman's axiomatic framework to QFT as well as to the necessary mathematical objects to their understanding (Hilbert analysis, distributions, group representations,...).
Proofs of
MATH-417: Number theory II.b - selected topicsThis year's topic is "Additive combinatorics and applications." We will introduce various methods from additive combinatorics, establish the sum-product theorem over finite fields and derive various a
MATH-106(f): Analysis IIÉtudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.