MATH-341: Linear modelsRegression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with
MATH-261: Discrete optimizationThis course is an introduction to linear and discrete optimization.
Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
ENG-209: Data science for engineers with PythonCe cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
ME-474: Numerical flow simulationThis course provides practical experience in the numerical simulation of fluid flows. Numerical methods are presented in the framework of the finite volume method. A simple solver is developed with Ma
PHYS-443: Physics of nuclear reactorsIn this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
EE-536: Physical models for micro and nanosystemsStudents will learn simple theoretical models, the theoretical background of finite element modeling as well as its application to modeling charge, mass and heat transport in electronic, fluidic and e
MATH-431: Theory of stochastic calculusIntroduction to the mathematical theory of stochastic calculus: construction of stochastic Ito integral, proof of Ito formula, introduction to stochastic differential equations, Girsanov theorem and F
MATH-101(c): Analysis IÉtudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.