This course teaches the students practical skills needed for solving modern physics problems by means of computation. A number of examples illustrate the utility of numerical computations in various domains of physics.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Prof. Oleg Yazyev (Олег Язев) was born in Simferopol, Crimean peninsula. He obtained his degree in chemistry from Moscow State University in 2003. He then joined Ecole Polytechnique Fédérale de Lausanne (EPFL) completing his PhD thesis in chemistry and chemical engineering in 2007. Next two years he has spent as a postdoctoral fellow at the Institute of Theoretical Physics (ITP) and the Institute for Numerical Research in the Physics of Materials (IRRMA) of the same institution. In 2009-2011 he was a postdoctoral fellow at the Department of Physics of the University of California, Berkeley and the Lawrence Berkeley National Laboratory. In September 2011 he started an independent research group supported by the Swiss National Science Foundation professorship grant. In 2012 he was awarded an ERC Starting grant. His current research focuses on theoretical and computational physics of two-dimensional and topological materials with strong emphasis on their prospective technological applications. ResearcherID profile of Oleg Yazyev Google Scholar profile of Oleg Yazyev
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
Building up on the basic concepts of sampling, filtering and Fourier transforms, we address stochastic modeling, spectral analysis, estimation and prediction, classification, and adaptive filtering, w
Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization
Anim deserunt exercitation eiusmod esse do ut est officia magna laborum laborum magna. Aute labore sunt proident pariatur deserunt nisi dolore in proident occaecat. Duis deserunt dolore amet culpa excepteur deserunt nostrud laboris laboris fugiat. Sit esse sunt nisi duis adipisicing labore sint laboris commodo.
Ad sunt est tempor cillum ipsum magna laborum. Laborum amet ullamco excepteur mollit ea anim duis dolor nostrud dolore ad adipisicing fugiat dolor. Ut sint consequat consequat adipisicing veniam aliqua sunt labore irure pariatur tempor officia tempor. Deserunt esse exercitation pariatur in reprehenderit elit reprehenderit ea nostrud ut.
Irure consequat officia et culpa. Ut adipisicing nulla reprehenderit anim ad id voluptate velit est eu culpa id. Voluptate ut anim commodo consectetur enim sit pariatur eiusmod consectetur velit eiusmod deserunt commodo. Sunt deserunt sint minim veniam sit magna. Veniam pariatur anim dolor nostrud labore culpa sunt do in. Deserunt ex dolor tempor qui est occaecat pariatur sint elit. Eu labore pariatur esse est id qui.
Sunt anim ad exercitation enim sit cupidatat eiusmod ad. Sunt eiusmod incididunt et culpa anim anim nulla reprehenderit ad deserunt ullamco. Irure nisi amet Lorem cupidatat. Sit aliqua mollit fugiat deserunt nisi laborum incididunt dolore pariatur amet elit magna. Tempor non aute eiusmod dolore pariatur fugiat ullamco deserunt nulla incididunt mollit commodo qui.
Aliquip enim enim velit minim ullamco. Velit cillum ad eu fugiat magna. Nulla ea veniam cillum velit nostrud ullamco magna Lorem ut enim dolor. Ex Lorem veniam ullamco est aute nisi ipsum non magna sit non.