Explore les modèles de séquence à séquence avec BART et T5, en discutant de l'apprentissage du transfert, du réglage fin, des architectures de modèles, des tâches, de la comparaison des performances, des résultats de synthèse et des références.
Explore la prédiction des réactions chimiques à l'aide de modèles générateurs et de transformateurs moléculaires, soulignant l'importance du traitement du langage moléculaire et de la stéréochimie.
Explique l'architecture complète des Transformateurs et le mécanisme d'auto-attention, en soulignant le changement de paradigme vers l'utilisation de modèles complètement préformés.
Explore Transformers dans la vision informatique, se concentrant sur l'architecture 'Attention est tout ce dont vous avez besoin' et ses applications dans les tâches visuelles.
Explore l'impact de l'apprentissage profond sur les humanités numériques, en se concentrant sur les systèmes de connaissances non conceptuels et les progrès récents de l'IA.
Explore le développement d'intégrations contextuelles dans le NLP, en mettant l'accent sur les progrès réalisés par ELMo et BERT et son impact sur les tâches du NLP.