Explore l'intersection entre les neurosciences et l'apprentissage automatique, en discutant de l'apprentissage profond, de l'apprentissage par renforcement, des systèmes de mémoire et de l'avenir du pont entre l'intelligence machine et l'intelligence humaine.
Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Plonge dans l'impact de l'apprentissage profond sur les systèmes de connaissances non conceptuels et les progrès dans les transformateurs et les réseaux antagonistes génératifs.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.
Explore l'application de la physique statistique à la compréhension de l'apprentissage profond en mettant l'accent sur les réseaux neuronaux et les défis de l'apprentissage automatique.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.