Introduit la diffusion inélastique en microscopie électronique à transmission, en se concentrant sur les principes et les applications de la spectroscopie de perte d'énergie électronique.
Explore la perspective historique, les propriétés et les applications des rayons X, y compris la diffraction, la résolution atomique et les couleurs spectrales des éléments.
Explore les interactions faisceau-matière, en se concentrant sur les phénomènes d'émission de l'ionisation électronique du noyau par les rayons X et les électrons, et la concurrence entre Auger et les émissions de rayons X.
Introduit la microscopie électronique, couvrant l'organisation pratique, la préparation d'échantillon, l'interaction rayonnement-matière, et les mécanismes de détecteur.
Explore les interactions faisceau-matière, les effets thermiques, les effets chimiques, les déplacements atomiques et les mécanismes d'émission de matière en microscopie électronique.
Explore les principes EDS et ESEM, la détection des rayons X, l'efficacité de l'ionisation, la loi de Moseley et les environnements d'échantillons ESEM.
Explore l'amplification des impulsions chirpées pour les impulsions laser ultracourtes et l'importance de la stabilisation de la phase Carrier-Envelope.
Explore les techniques de spectroscopie d'énergie comme XPS et UPS, la spectroscopie Auger, la sensibilité de surface et la structure de bande de graphène.