Discute des techniques avancées d'optimisation Spark pour gérer efficacement les Big Data, en se concentrant sur la parallélisation, les opérations de mélange et la gestion de la mémoire.
Introduit le cours d'analyse des données appliquées à l'EPFL, couvrant un large éventail de sujets d'analyse des données et mettant l'accent sur l'apprentissage continu en sciences des données.
Couvre l'intégration du stockage de données évolutives et de la carte réduisent le traitement à l'aide de Hadoop, y compris HDFS, Hive, Parquet, ORC, Spark et HBase.
Déplacez-vous dans le « virage numérique » de l'histoire, en examinant la recherche historique à l'aide de journaux numérisés et en explorant la réutilisation du texte, l'intégration des mots et la visualisation des données.
Couvre l'essentiel de la science des données, y compris le traitement, la visualisation et l'analyse des données, en mettant l'accent sur les compétences pratiques et l'engagement actif.
Explore les possibilités de transformation numérique, les mégadonnées, l'analyse et les innovations technologiques dans le domaine des affaires et de la recherche.
Introduit des outils collaboratifs de science des données comme Git et Docker, en mettant l'accent sur le travail d'équipe et les exercices pratiques pour un apprentissage efficace.