Explore le parallélisme dans la programmation, en mettant l'accent sur les compromis entre la programmabilité et la performance, et introduit la programmation parallèle en mémoire partagée à l'aide d'OpenMP.
Explore la motivation et les avantages de l'utilisation des GPU pour le calcul, en se concentrant sur leurs performances et leur programmation via CUDA.
Couvre l'évolution et les défis des multiprocesseurs, en mettant l'accent sur l'efficacité énergétique, la programmation parallèle, la cohérence du cache et le rôle des GPU.
Explore le paysage des données volumineuses, l'importance de la mémoire dans les services en ligne, les défis auxquels sont confrontés les systèmes de mémoire, les technologies DRAM émergentes et la mémoire de classe stockage.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.