Introduit des concepts d'apprentissage profond pour les NLP, couvrant l'intégration de mots, les RNN et les Transformateurs, mettant l'accent sur l'auto-attention et l'attention multi-têtes.
Couvre l'impact des transformateurs dans la vision par ordinateur, en discutant de leur architecture, de leurs applications et de leurs progrès dans diverses tâches.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Introduit des intégrations de mots, expliquant comment ils capturent les significations des mots en fonction du contexte et de leurs applications dans les tâches de traitement du langage naturel.