Explore les équations différentielles linéaires, y compris les équations linéaires homogènes d'ordre supérieur et les équations à coefficients constants.
Couvre la résolution des équations différentielles inhomogènes linéaires et la recherche de leurs solutions générales en utilisant la méthode de variation des constantes.
Discute de la transformée de Fourier et de son application à la résolution d'équations différentielles, en se concentrant sur l'équation d'onde et ses transformations.
Couvre la solution générale des équations différentielles inhomogènes et explore la dépendance linéaire, les théorèmes dunicité et les équations de second ordre.