Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des systèmes de base de données, couvrant l'écosystème DBMS, le modèle relationnel, l'aperçu des cours, les prérequis, le plan de cours, le système de classement, les projets et les méthodes d'enseignement.
Introduit le modèle relationnel, SQL, les clés, les contraintes d'intégrité, la traduction ER, les entités faibles, les hiérarchies ISA et SQL vs. noSQL.
Explore l'importance des métadonnées dans l'organisation des bibliothèques médiatiques et les défis que pose la récupération efficace d'oeuvres ou d'artistes spécifiques.
Explore la symétrie et les conditions aux limites dans les modèles par éléments finis, en soulignant l'importance de maintenir la symétrie pour une modélisation précise.
Couvre les bases de données relationnelles, les transactions et la cohérence des données dans le contexte des typologies historiques des bases de données.
Couvre les bases de données relationnelles et spatiales, y compris le stockage, les systèmes de gestion, les propriétés ACID, les typologies historiques, les clés primaires et étrangères et les fonctions spatiales.
Introduit les principes fondamentaux des systèmes de gestion des bases de données, couvrant le modèle relationnel, les options de stockage, l'intégrité des données, les requêtes et les langages de manipulation des données.
Couvre les techniques de manipulation des données à l'aide de Hadoop, en se concentrant sur les bases de données axées sur les lignes et les colonnes, les formats de stockage populaires et l'intégration HBase-Hive.
Couvre les cadres de données Spark, les collections distribuées de données organisées en colonnes nommées, et les avantages de les utiliser sur les DDR.