Couvre la recherche probabiliste de l'information, les modèles de probabilité d'interrogation, la modélisation du langage et les algorithmes de rétroaction de pertinence.
Couvre les modèles probabilistes d'extraction, les mesures d'évaluation, la probabilité de la requête, la rétroaction sur la pertinence de l'utilisateur et l'expansion de la requête.
Couvre la récupération d'informations probabilistes, la pertinence de la modélisation en tant que probabilité, l'expansion des requêtes et la génération automatique de thésaurus.
Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
Couvre les concepts de lunettes de spin et d'estimation bayésienne, en se concentrant sur l'observation et la déduction de l'information d'un système de près.