Théorie des probabilités: Marginaux conjoints et causalité granger
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les mesures d'information telles que l'entropie, la divergence Kullback-Leibler et l'inégalité de traitement des données, ainsi que les noyaux de probabilité et les informations mutuelles.
Introduit des concepts clés en probabilité et en statistique, illustrant leur application à travers divers exemples et soulignant l'importance du langage mathématique dans la compréhension de l'univers.
Déplacez-vous dans les probabilités, les statistiques, les expériences aléatoires et l'inférence statistique, avec des exemples pratiques et des idées.
Explore l'indépendance et la probabilité conditionnelle dans les probabilités et les statistiques, avec des exemples illustrant les concepts et les applications pratiques.