Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.
Explore la rareté de l'apprentissage des réseaux de réaction chimique à partir des données de trajectoire à l'aide de méthodes fondées sur les données et d'approches d'apprentissage.
Explore l'échantillonnage de l'ensemble canonique, des fluctuations de température, de la distribution lagrangienne étendue et de Maxwell-Boltzmann dans les simulations de dynamique moléculaire.
Couvre les méthodes de calcul des systèmes moléculaires à température finie, en mettant l'accent sur l'échantillonnage stochastique et les simulations d'évolution du temps.
Discute de l'application des méthodes de Monte Carlo dans l'analyse du rayonnement thermique, en se concentrant sur les fonctions de probabilité et les techniques d'intégration numérique.
Discute des concepts statistiques clés, y compris les dangers d'échantillonnage, les inégalités et le théorème de la limite centrale, avec des exemples pratiques et des applications.