Couvre les bases de la récupération d'informations à l'aide de modèles d'espace vectoriel et d'exercices pratiques sur la rétroaction de pertinence et la numérisation de la liste de publication.
Couvre la récupération d'informations probabilistes, la pertinence de la modélisation en tant que probabilité, l'expansion des requêtes et la génération automatique de thésaurus.
Présente les bases de la récupération d'informations, couvrant la représentation de documents, l'expansion des requêtes et TF-IDF pour le classement des documents.
Discute de l'évaluation des classificateurs binaires, y compris le rappel, la sensibilité, la spécificité, les courbes ROC et les mesures de performance.