Extraction d'informations: Algorithmes et Techniques
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Explore la désambiguïsation des entités, reliant le texte aux bases de connaissances et la prédiction de liens dans les graphiques de connaissances avec des exemples de Wikipedia.
Explore l'optimisation des modèles d'intégration de mots, y compris la minimisation de la fonction de perte et la descente de gradient, et introduit des techniques comme Fasttext et Byte Pair Encoding.
Explore l'indexation sémantique latente dans la récupération d'information, en discutant des algorithmes, des défis dans la récupération spatiale vectorielle et des méthodes de récupération axées sur le concept.
Couvre les bases du traitement du langage naturel, y compris la tokenisation, le marquage en partie de la parole et l'intégration, et explore des applications pratiques comme l'analyse du sentiment.
Explore la recherche de documents, la classification, l'analyse des sentiments, les matrices TF-IDF, les méthodes de voisinage les plus proches, la factorisation matricielle, la régularisation, LDA, les vecteurs de mots contextualisés et BERT.