Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Déplacez-vous dans le « virage numérique » de l'histoire, en examinant la recherche historique à l'aide de journaux numérisés et en explorant la réutilisation du texte, l'intégration des mots et la visualisation des données.
Explore les processus cognitifs dans l'analyse des données, en mettant l'accent sur la pensée visuelle et la simplification pour extraire des informations à partir de données.
Couvre l'analyse des données sur la pollution atmosphérique, en se concentrant sur les bases de R, en visualisant des séries chronologiques et en créant des résumés des concentrations de polluants.
Explore la méthodologie d'analyse des flux de matériaux à l'échelle économique et les applications dans les projets du monde réel à l'aide de carnets Jupyter.
Couvre une mission de travail sur les données de querelle et d'analyse à l'aide de la bibliothèque de pandas de Python pour les ensembles de données du monde réel.
Couvre les progrès récents de l'apprentissage structurel pour les modèles graphiques, y compris les modèles gaussiens, les modèles mixtes et les événements extrêmes.