Protection de la vie privée Publication de données : concepts de confidentialité différentiels
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'évolution historique et les aspects juridiques des lois sur la protection des données, des instruments internationaux, des défis du suivi en ligne, des bases juridiques pour le traitement des données à caractère personnel et des règles de confidentialité.
Explore les défis de la publication de données préservant la vie privée, y compris les exemples de désidentification et les menaces pour la vie privée, et présente une étude de cas sur les efforts d'Airbnb pour lutter contre les pratiques racistes tout en protégeant la vie privée des utilisateurs.
Introduit un cours sur les technologies d'amélioration de la protection de la vie privée couvrant divers mécanismes et mettant l'accent sur la protection de la vie privée en tant que bien de sécurité.
Se penche sur les aspects juridiques des appels d'offres en temps réel dans la publicité en ligne, en mettant l'accent sur les lois sur la protection des données, les défis de la gestion du consentement et les implications juridiques récentes.
Explore les technologies d'identité, l'identification autonome, les systèmes fédérés, les mécanismes de protection de la vie privée et la confiance dans les services en ligne.
Explore l'évaluation environnementale systémique, l'analyse nationale des flux de matériaux et le développement d'un tableau de bord du métabolisme urbain pour Zurich à l'aide de données ouvertes.
Couvre les principes et les stratégies de l'ingénierie de la protection de la vie privée, en soulignant l'importance d'intégrer la protection de la vie privée dans les systèmes de TI et les défis à relever pour atteindre la protection de la vie privée par la conception.
Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.
Explore la production, le stockage, le traitement et les dimensions de Big Data, ainsi que les défis en matière d'analyse de données, d'élasticité de l'informatique en nuage et de sécurité.