Représentations neuro-symboliques: Connaissances communes et Raisonnement
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les stratégies de formation pour les Transformateurs dans le PNL et Vision, en mettant l'accent sur les progrès rapides et les défis dans les modèles d'échelle.
Explore les politiques interactives d'apprentissage à partir de sources de données non traditionnelles pour les systèmes autonomes, y compris les actions latentes en connaissance de langue et le cadre PLATO.
Fournit un aperçu du traitement du langage naturel, en se concentrant sur les transformateurs, la tokenisation et les mécanismes d'auto-attention pour une analyse et une synthèse efficaces du langage.
Explore la désambiguïsation des entités, reliant les mentions de texte à une base de connaissances, la cohérence dans les graphes d'entités et le PageRank personnalisé.
Explore les modèles de résolution de coréférence, les défis dans les échelles de notation, les techniques de raffinement des graphiques, les résultats de pointe et l'impact des transformateurs préentraînés.
Explore la désambiguïsation des entités, reliant le texte aux bases de connaissances et la prédiction de liens dans les graphiques de connaissances avec des exemples de Wikipedia.