Explore l'inférence causale en épidémiologie, en mettant l'accent sur l'impact de la COVID-19 sur la naissance prématurée et en perfectionnant les stratégies de traitement du cancer de la prostate.
Explore la découverte causale à l'aide de modèles variables latents, en mettant l'accent sur les défis et les solutions pour déduire les relations causales à partir de données non gaussiennes.
Enquêter sur la façon dont le mois de naissance influence le succès des athlètes, analyser l'ensemble de données des athlètes japonais pour explorer les tendances dans les dates de naissance et les professions.
Introduit des variables instrumentales pour résoudre les problèmes d'endogenèse, en utilisant des exemples pour illustrer les applications pratiques et les exigences d'essai.