Couvre les méthodes numériques pour résoudre les problèmes de valeurs limites en utilisant des méthodes de différence finie, de FFT et d'éléments finis.
Explore la formulation faible et la méthode Galerkin dans les applications de la méthode des éléments finis, y compris les conditions limites et les systèmes linéaires d'équations.
Explore l'approche locale de la méthode des éléments finis, couvrant les fonctions de forme nodale, les restrictions de solution, les tailles, les conditions aux limites et les opérations d'assemblage.
Explique les grilles de différence finie pour calculer les solutions de membranes élastiques à l'aide de l'équation et des méthodes numériques de Laplace.