Régression logistiqueEn statistiques, la régression logistique ou modèle logit est un modèle de régression binomiale. Comme pour tous les modèles de régression binomiale, il s'agit d'expliquer au mieux une variable binaire (la présence ou l'absence d'une caractéristique donnée) par des observations réelles nombreuses, grâce à un modèle mathématique. En d'autres termes d'associer une variable aléatoire de Bernoulli (génériquement notée ) à un vecteur de variables aléatoires . La régression logistique constitue un cas particulier de modèle linéaire généralisé.
LogitLa fonction logit est une fonction mathématique utilisée principalement en statistiques et pour la régression logistique, en intelligence artificielle (réseaux neuronaux), en inférence bayésienne pour transformer les probabilités sur [0,1] en évidence sur R afin d'une part d'éviter des renormalisations permanentes, et d'autre part de rendre additive la formule de Bayes pour faciliter les calculs. Son expression est où p est défini sur ]0, 1[ La base du logarithme utilisé est sans importance, tant que celle-ci est supérieure à 1.
Discrete choiceIn economics, discrete choice models, or qualitative choice models, describe, explain, and predict choices between two or more discrete alternatives, such as entering or not entering the labor market, or choosing between modes of transport. Such choices contrast with standard consumption models in which the quantity of each good consumed is assumed to be a continuous variable. In the continuous case, calculus methods (e.g. first-order conditions) can be used to determine the optimum amount chosen, and demand can be modeled empirically using regression analysis.
Modèle probitEn statistiques, le modèle probit est un modèle de régression binomiale. Le modèle probit a été introduit par Chester Bliss en 1934. C'est un cas particulier du modèle linéaire généralisé. Soit Y une variable aléatoire binaire (i.e. prenant pour valeur 0 ou 1) et X un vecteur de variables dont on suppose qu'il influence Y. On fait l'hypothèse que le modèle s'écrit de la manière suivante : où désigne la fonction de répartition de la loi normale centrée réduite. Régression logistique Catégorie:Modèle statist
ProbitIn probability theory and statistics, the probit function is the quantile function associated with the standard normal distribution. It has applications in data analysis and machine learning, in particular exploratory statistical graphics and specialized regression modeling of binary response variables. Mathematically, the probit is the inverse of the cumulative distribution function of the standard normal distribution, which is denoted as , so the probit is defined as Largely because of the central limit theorem, the standard normal distribution plays a fundamental role in probability theory and statistics.