En mathématiques, un point col ou point-selle () d'une fonction f définie sur un produit cartésien X × Y de deux ensembles X et Y est un point tel que : atteint un maximum en sur Y ; et atteint un minimum en sur X. Certains auteurs inversent les maximum et minimum ( a un minimum en et a un maximum en ), mais cela ne modifie pas qualitativement les résultats (on peut revenir au cas présent par un changement de variables). Le terme point-selle fait référence à la forme de selle de cheval que prend le graphe de la fonction lorsque X et Y sont des intervalles de .
En mathématiques, la matrice hessienne (ou simplement le hessien ou la hessienne) d'une fonction numérique est la matrice carrée, notée , de ses dérivées partielles secondes. Etant donnée une fonction à valeurs réelles dont toutes les dérivées partielles secondes existent, le coefficient d'indice de la matrice hessienne vaut . Autrement dit, On appelle discriminant hessien (ou simplement hessien) le déterminant de cette matrice. Le terme « hessien » a été introduit par James Joseph Sylvester, en hommage au mathématicien allemand Ludwig Otto Hesse.
L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
En programmation informatique, l'optimisation de code est la pratique consistant à améliorer l'efficacité du code informatique d'un programme ou d'une bibliothèque logicielle. Ces améliorations permettent généralement au programme résultant de s'exécuter plus rapidement, de prendre moins de place en mémoire, de limiter sa consommation de ressources (par exemple les fichiers), ou de consommer moins d'énergie électrique. La règle numéro un de l'optimisation est qu'elle ne doit intervenir qu'une fois que le programme fonctionne et répond aux spécifications fonctionnelles.
En analyse à plusieurs variables, un point critique d'une fonction de plusieurs variables, à valeurs numériques, est un point d'annulation de son gradient, c'est-à-dire un point tel que . La valeur prise par la fonction en un point critique s'appelle alors une valeur critique. Les valeurs qui ne sont pas critiques sont appelées valeurs régulières. Les points critiques servent d'intermédiaire pour la recherche des extrémums d'une telle fonction.