Introduit des modèles de Markov cachés, expliquant les problèmes de base et les algorithmes comme Forward-Backward, Viterbi et Baum-Welch, en mettant laccent sur lattente-Maximisation.
Couvre les processus de Markov, les densités de transition et la distribution sous réserve d'information, en discutant de la classification des états et des distributions fixes.
Explore les chaînes Markov, Metropolis-Hastings, et la simulation à des fins d'optimisation, soulignant l'importance de l'ergonomie dans la simulation variable efficace.
Explore la convergence de la chaîne de Markov, en mettant l'accent sur la distribution invariante, la loi des grands nombres et le calcul des récompenses moyennes.
Explore les chaînes de Markov et leurs applications dans des algorithmes, en se concentrant sur l'impatience des utilisateurs et la génération d'échantillons fidèles.
Explore les classes communicantes dans les chaînes de Markov, en distinguant les classes transitoires et récurrentes, et approfondit les propriétés de ces classes.
Explore le couplage des chaînes de Markov et la preuve du théorème ergodique, en mettant l'accent sur la convergence des distributions et les propriétés de la chaîne.