Neuroprothèses : améliorer la rétroaction sensorielle dans le contrôle des membres
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le traitement du signal neuronal pour les interfaces cerveau-ordinateur, y compris les techniques de décodage comme les filtres Kalman et le tri des pics.
Couvre les fondamentaux des signaux neuraux et du traitement des signaux, en mettant l'accent sur la modélisation et la simulation des systèmes neuraux.
Explore l'importance de la rétroaction sensorielle en temps réel dans l'amélioration du contrôle et de l'impact fonctionnel des mains prothétiques grâce à diverses méthodes de neuro-ingénierie.
Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Couvre les modèles neuronaux hybrides pour les neuroprothèses, l'optimisation de la stimulation nerveuse et la récupération après une lésion de la moelle épinière.
Couvre les modèles neuronaux hybrides, l'histologie nerveuse, la restauration sensorielle et la stimulation cérébrale profonde dans les neuroprothèses.