Passer au contenu principal
Graph
Search
fr
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Séance de cours
Coordonnées curvilignes : calculs et exemples
Graph Chatbot
Séances de cours associées (31)
Précédent
Page 1 sur 4
Suivant
Aspects géométriques des opérateurs différentiels
Explore les opérateurs différentiels, les courbes régulières, les normes et les fonctions injectives, en répondant aux questions sur les propriétés, les normes, la simplicité et l'injectivité des courbes.
Zones géométriques: Intégraux et Régions
Couvre le calcul des zones utilisant des intégrales pour les régions géométriques définies par des courbes et des équations paramétriques.
Integrals inappropriés: Convergence et comparaison
Explore les intégrales inappropriées, les critères de convergence, les théorèmes de comparaison et la révolution solide.
Courbes avec Poritsky Property et Liouville Nets
Explore les courbes avec la propriété Poritsky, l'intégrité Birkhoff et les filets Liouville dans les billards.
Théorème des résidus : Calcul d'intégrales sur des courbes fermées
Couvre l'application du théorème des résidus dans le calcul des intégrales sur des courbes fermées dans l'analyse complexe.
Théorème vert : analyse des dérivés potentiels
Explore les dérivés potentiels, le théorème de Green, les courbes simples et l'adhérence dans les domaines ouverts.
Intégraux de surface : Paramétrisation régulière
Couvre les intégrales de surface en mettant l'accent sur la paramétrisation régulière et l'importance de comprendre le vecteur normal.
Intégrales de surface, théorème de divergence et théorème de Stocks
Couvre les intégrales de surface, le théorème de divergence et le théorème de Stocks à travers des exemples et des analogies.
Intégrales de surface : surfaces implicites
Couvre les surfaces implicites, les descriptions paramétriques, la paramétrisation régulière, les vecteurs normaux et les surfaces orientables.
Analyse des champs vectoriels
Explore l'analyse des champs vectoriels, couvrant les intégrales curvilignes, les champs potentiels et les conditions de connectivité des champs.