Modèles stochastiques pour les communications: Introduction
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les outils mathématiques pour les systèmes de communication et la science des données, y compris la théorie de l'information et le traitement des signaux.
Couvre la conversion des signaux analogiques en signaux numériques, de compression des données et de reconstruction des signaux, soulignant l'importance du traitement des signaux dans les systèmes de communication.
Explore le traitement neurobiologique des signaux, couvrant la modélisation des pics, la classification des signaux et la caractérisation des données à l'aide de l'analyse des composantes principales.
Explore les méthodes d'estimation du spectre paramétrique, y compris les spectres linéaires et lisses, et se penche sur l'analyse de la variabilité de la fréquence cardiaque.
Explore les signaux filtrants avec un filtre moyen mobile et le processus d'échantillonnage, soulignant l'importance de la reconstruction des signaux à partir des échantillons.
Explore l'optimisation des systèmes neuroprothétiques, y compris la restauration de rétroaction sensorielle et les stratégies de stimulation neuronale.