Cette séance de cours couvre la résolution des équations différentielles ordinaires linéaires du second ordre avec des coefficients constants, y compris la recherche de la solution générale de l'équation homogène, une solution particulière de l'équation inhomogène, et la combinaison avec les conditions initiales. Les oscillateurs harmoniques humides et les oscillateurs harmoniques forcés en sont des exemples. Différentes méthodes sont présentées pour trouver des solutions particulières selon la forme du terme source, comme les polynômes, les exponentiels et les fonctions trigonométriques.