Explore la classification des données textuelles, en se concentrant sur des méthodes telles que les bayes naïques et les techniques de réduction de la dimensionnalité telles que l'analyse des composantes principales.
Introduit la classification des documents en utilisant des fonctionnalités telles que les mots et les métadonnées, et des modèles tels que k-Nearest-Neighbors et word embeddings.
Explore les règles de voisinage les plus proches, les défis de l'algorithme k-NN, le classificateur Bayes et l'algorithme k-means pour le regroupement.
Introduit le traitement du langage naturel (NLP) et ses applications, couvrant la tokenisation, l'apprentissage automatique, l'analyse du sentiment et les applications NLP suisses.
Explore l'extraction de connaissances à partir du texte, couvrant des concepts clés tels que l'extraction de phrases clés et la reconnaissance d'entités nommées.
Explore les algorithmes et les techniques d'extraction de l'information, y compris l'algorithme Viterbi, la reconnaissance des entités nommées, et la surveillance lointaine.
Les couvertures comportent des méthodes d'extraction, de regroupement et de classification pour les ensembles de données de grande dimension et l'analyse comportementale utilisant PCA, t-SNE, k-means, GMM et divers algorithmes de classification.
Introduit k-Nearest Neighbors pour la classification et l'expansion des fonctionnalités pour gérer les données non linéaires via des entrées transformées.